0=-16t^2+16t+52

Simple and best practice solution for 0=-16t^2+16t+52 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+16t+52 equation:



0=-16t^2+16t+52
We move all terms to the left:
0-(-16t^2+16t+52)=0
We add all the numbers together, and all the variables
-(-16t^2+16t+52)=0
We get rid of parentheses
16t^2-16t-52=0
a = 16; b = -16; c = -52;
Δ = b2-4ac
Δ = -162-4·16·(-52)
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-16\sqrt{14}}{2*16}=\frac{16-16\sqrt{14}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+16\sqrt{14}}{2*16}=\frac{16+16\sqrt{14}}{32} $

See similar equations:

| -3x-15=-x-7 | | 7x-10=x+20 | | -5x+13=-2x-17 | | 4(2y-3=3(y+6 | | -5x+17=-x+33 | | E^2x-6=16 | | +70=+26.56+(x*14)*(x+10/12) | | (x+7)^2=1156 | | 24/5=33/5+17x/25 | | 1/2+3=x+1 | | -15+(-5x)=0 | | 6⋅(x−4)=−42 | | 5*(x−4)=−50 | | 5⋅(x−4)=−50 | | 36=x*0.009 | | 5*(x-15)=-25 | | x/0,9=200/18 | | 200/18=x/0.9 | | 6x=3x-1,5x^2/4 | | 5x-24=4(x-4) | | 9x-7=5x-15 | | 2(5x+5)+5=5x+30 | | -3+16=-x-4 | | (-5+3i)-(6-i)=0 | | 4(2x+5)=x+27 | | 4x+42=5(4x+2) | | -x+24=4x+44 | | 3/2z-z-3/2=5/6 | | -8=4(x+5) | | -3x+43=5(5x+3) | | 2(x-3)=-28 | | -4x-11=-3x-21 |

Equations solver categories